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Abstract
A simplified model of the living cell is studied. The reaction space is divided
into compartments and the structured (non-compact) geometry is described in
terms of a network consisting of containers connected by tubes. By assumption,
reactions in the containers (tubes) are allowed (forbidden). It is assumed that
the number of reactants is low, leading to stochastic (noisy) dynamics. By
varying the transport rate among various containers D relative to the reaction
rate within each container λ, using either D � λ or D � λ, a transition
from a reaction-controlled (reactants mix well) towards a diffusion-controlled
(large spatial fluctuations) regime can be studied. The focus is on a study
of the timing of chemical reactions. For a single set of chemical reactions,
the reaction times t = (t1, t2, . . .) are defined as the time intervals needed
to synthesize a given amount of molecules (of various types and in different
regions of the system). The components of t are stochastic (non-independent)
variables described in terms of two moments: average τ = (τ1, τ2, . . .) and
standard deviation σ = (σ1, σ2, . . .). In such a way it is possible to have a
measure of the reaction speed (τ ) and noise content (σ ). A large number of
chemical reactions were classified by monitoring how norms τ and σ vary as
the geometry of the system changes from compact (τ0, σ0) towards structured
(τn , σn). It is found that there are reactions that draw benefits in terms of
both increased reaction speed (τn < τ0) and noise reduction (σn < σ0). Such
reactions become faster and synchronize better in structured space. There are
reactions that exhibit an increase in speed (τn < τ0) but become more noisy and
harder to synchronize (σn > σ0). Opposite cases are possible where reactions
become slower (τn > τ0) but more accurate (σn < σ0).

1. Introduction

Diffusion-controlled reactions are ubiquitous in nature and have been explored intensively over
a long time period. The simplest way to define diffusion-controlled reactions is by using a
lattice model in which reactants move on the lattice with a jump rate D and when meeting at
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the same lattice site react with a reaction rate λ. An interesting situation arises when λ � D:
diffusion does not mix the reactants well and large spatial fluctuations develop. Any attempt to
describe such kind of kinetics using mean field theory fails. This kind of dynamics is normally
referred to as anomalous (non-mean field), or fluctuation dominated. Numerous experimental
and theoretical investigations have been devoted to these problems (e.g. see [1–7] for reviews
on the subject).

The theoretical investigation of diffusion-controlled reactions is still a very active field.
There are a couple of reasons for this. First, even in traditional settings (large volumes, point
reactants) the field is extremely technical. An enormous number of computational methods
have been developed to describe diffusion-controlled reactions but none of them gives a definite
answer. There is still a large challenge on the method development front that has to be overcome
since each new problem requires its own set of approximations. Second, novel phenomena are
investigated that give an additional boost to the field. One example is the study of diffusion-
controlled reactions in liposome networks. A review of this work is given in [8].

Out of numerous studies of diffusion-controlled reactions the investigations of diffusion-
controlled reactions in restricted geometries might be the one that is most relevant to this paper.
When the size of the reaction volume is slightly larger than the typical size of reactants, new
phenomena arise. For example, due to the presence of geometrical constraints, exclusion effects
become important. Low particle numbers lead to the fact that the dynamics becomes noisy.
Also, chemical details have to be accounted for. Steric effects start showing up: the reactants
cannot be described as uniform reacting spheres, but have reactive spots, and have to approach
each other in a specific way in order to react. These phenomena have been explored in a large
number of studies. Some work can be found in [9–18].

In this work the focus is on the investigation of diffusion-controlled reactions in
environments reminiscent of the ones found in the living cell. Due to the small cell size the
diffusion is frequently employed as a transport mechanism. There are other means of transport
such as the ones that use motor proteins, but diffusion is often employed. For example, for a cell
of the size L ∼ 1 μm and diffusion constant of regulatory molecules of the order Dr ∼ 10−6–
10−5 cm2 s−1, one gets a mixing time of the order tmix ∼ L2/Dr ∼ 1–10 ms [19]. Due to
the frequent use of diffusion in the living cell dynamics the tools being developed to study
diffusion-controlled reactions in general, and reactions in restricted geometries in particular,
could prove extremely useful.

Modern research in cytology shows that chemical reaction dynamics in the cell interior
cannot be described in the framework of bulk studies (for a review on the subject see [20–23]).
A living cell interior is structured: the space is divided into various regions. Part of the
intracellular space is taken by organelles such as Golgi apparatus or mitochondria. Even the
region outside organelles is not smooth, being crowded with obstacles. In the cell interior, the
concentration of macromolecules can be as high as 30% by weight [22]. In such an environment
the reactants do not have much space to move, and the motion of individual molecules is heavily
influenced either by other molecules that move around (and possibly react with them) or by
static obstacles that are present. In addition, the geometrical arrangement of reactants can
be quite complicated. There are few examples of protein complexes that are closely packed in
careful geometrical arrangement in order to carry out synthesis [24, 23]. Also, reaction volumes
can be quite dynamic: protein complexes are formed just in order to execute (catalyse) chemical
reactions and they disappear once the synthesis is done [24].

The assumption that the cell interior is a smooth, compact, and static space is simply
incorrect, and there is experimental evidence for that. In this context it is natural to wonder
about the role of diffusion-controlled reactions. To what extent should we revise what we
know about these reactions in order to be able to describe living cell biochemistry? New
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unifying concepts might be needed to understand such an environment. In this paper some
issues related to the kinetics of diffusion-controlled reactions in small and structured geometries
will be addressed. A framework is presented that can be used to study the timing of chemical
reactions in structured (and dynamic) spaces such as the ones found in the living cell.

A large number of studies have dealt with describing various issues of timing in the cell
biochemistry. For example, a living cell avoids unnecessary storage of chemicals by carefully
scheduling reaction events. Reactants are transported to various parts of the cell exactly
at the time and place that they are needed. Large numbers of studies have explored these
issues [19, 25–31]. The inspiration for the present work comes from investigations.

When the number of reactants is low the dynamics is stochastic and noisy. In such a case
the exact arrival of chemicals cannot be precisely defined. It is exactly such a situation that
is investigated in this work. Accuracy in timing is important if reactions are to function in
synchronous mode. A large number of chemical reactions will be studied and they will be
classified with regard to the noise characteristics they posses. Previously, a similar study was
done in which the focus was on the average time for reactions to complete [32].

The details of the chemical reactions and transport are omitted. The reactants are assumed
to be point-like objects and only three scales are kept in the problem: the reaction rate λ, the
transport rate D, and the parameter ξ that describes catalytic influences. Also, a rather crude
approximation of living cell geometry is made. The details of the geometry of the living cell and
organelles it contains do play a role [33–35]. However, here the geometry is greatly simplified.
An attempt will be made to model the fact that the cell interior is not a large open space but is
divided into many regions.

Figure 1 shows a schematic presentation of what is being studied. Panels (a)–(c) depict
three different ways of modelling the chemical reaction dynamics of the living cell. In the
first approximation one can think of a cell as a closed space that harbours a certain amount of
reactants, as shown in panel (a). The reactants freely move around since there are no obstacles
(apart from the fact that they influence each other through exclusion effects). Panel (b) shows
the situation where space is structured and the mixing of reactants is not as efficient as in the
previous case depicted in panel (a). Panel (c) shows how complicated space in panel (b) is
modelled in terms of simple geometrical objects (spheres and tubes connecting them).

Panel (c) lacks all the details of panel (b) but it does capture the most important aspects
of the problem. The simplified version of the structured space depicted in panel (c) is easier
to address theoretically. Also, the structures depicted in panel (c) can be routinely built in the
laboratory as liposome networks. The experimental details can be found in work published
in [36]. The motivation to use the setup presented in panel (c) as a model of structured space
comes from [36].

How do we investigate the changes in reaction dynamics when the geometry is altered
from compact (panel (a)) towards structured (panel (b))? Such a transformation would be hard
to describe in mathematical terms and another more practical route has to be followed. In the
following the focus will be on panel (c). The transition from panel (a) to panel (b) can be
simulated by increasing the lengths of the tubes in panel (c). When the tubes are short one has
compact geometry (e.g. the one depicted in panel (a)); when they are long one has structured
geometry (as in panel (b)). Equivalently, instead of physically changing the tube lengths only
the transport rate D will be altered. One simply has to study changes in reaction timing as the
transport rate changes from D � λ (reaction controlled) towards D � λ (diffusion controlled).
This is the main idea of the paper1.

1 The classical field of fluctuation-dominated kinetics can be seen as a special case of the setup studied here in which
the network used is regular, with a well defined number of neighbours.
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Figure 1. The goal is to understand how the reaction dynamics alters when the geometry of the
system changes from compact, shown in panel (a), towards non-compact (structured), shown in
panels (b) and (c). Panel (a) rough model of the cell in which reactants move inside a close volume.
Panel (b) a more realistic model of the living cell showing that it is structured. Panel (c) a network
consisting of containers and tubes is used to capture the most important geometrical features of the
problem. For example, the drawing in panel (c) reflects the relative size of the volumes in panel
(b): V1 < V2 ≈ V3 < V4. The connectivity patterns in (b) and (c) are the same. Varying length of
the tubes can be accounted for by adjusting the corresponding transport coefficients (however, for
simplicity reasons, only one parameter D is used). When D � λ the reaction dynamics in panels
(b) and (c) should exhibit some similarities. For D � λ one expects the same for the structures (a)
and (c).

The paper is organized as follows. In section 2 the dynamics is defined with all necessary
details. Section 3 describes how reaction times are defined, and is one of the most important
building blocks of the paper. Section 4 explains how various chemical reactions are compared
and classified. The most important results of this paper are discussed in section 5.

2. Definition of dynamics

The model introduced in a previous study [32] is used. Here, only a brief summary of the
model will be given, since all details can be found in the previous publication. By assumption,
the particles move in the network depicted in figure 1 (panel (c)). The transport rate is given
by D provided there is a link between containers. If particles are allowed to react, they do this
within containers with rate λ. Reactions in tubes are not allowed. In such a way the transport
scale and reaction scales are clearly separated.
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For computational convenience a very simple type of reaction scheme will be considered:

Xα

±Xγ→ Xβ (1)

where +Xγ (−Xγ ) implies that the Xγ molecule is a promoter (inhibitor) for the reaction
modifying the bare reaction rate λ into ξλ (λ/ξ ). Variable ξ � 1 denotes the catalysis
enhancement factor and it is taken very large in order to amplify the catalytic influences.
Symbol Xγ is omitted if the reaction is not catalysed.

To describe the system at any time instant it is sufficient to track the number of particles in
each container. The state of the system is specified by vector c, where

c = [n1; . . . ; ni; . . . ; nN ] (2)

and

ni = (n1,i , . . . , nα,i , . . . , nM,i ). (3)

For example, nα,i is a variable that specifies the number of Xα molecules in container Ci . The
dynamics of c is governed by the master equation

ṗ(c, t) =
∑

c′
Rc,c′ p(c′, t) −

∑

c′
Rc′c p(c, t). (4)

A dot over a symbol denotes time derivative and p(c, t) specifies occupation probabilities. The
reaction rates Rc′c for the c → c′ transition can be easily calculated from the details of how the
reaction rates are defined.

3. Defining reaction time

The goal is to compare various reactions with regard to reaction time. In order to be able to
define the reaction time one has to fully specify the initial condition and when the dynamics
ends. This is done through the use of inject and task patterns ι and π . First, one has to
define how the dynamics starts: ι = c(0). Second, the dynamics stops when molecules are
synthesized for the first time. The end of the reaction cycle is defined by specifying the type of
molecules that needs to be synthesized, their amount, and in which container. This information
is embedded in vector π .

Task pattern π does not specify the configuration of the system in the strict sense as c

and ι do. As an illustration a simplest non-trivial network with two containers C1 and C2

connected by the tube will be discussed. This network is depicted in figure 2. For example, the
dynamics can be started from configuration ι = [(2A, 1B); (0A, 1B)]2. Also, in the case of
two containers it is convenient to use slightly different notation and denote the inject pattern as
ι = [2A, 1B] − [1B]. Task patterns will be indicated in similar way. For example, it could be
specified as π = [3A] − [1A, 2B]. This expression does not indicate that the dynamics stops
when configuration c = [3A, 0B); (1A, 2B)] is reached!3 Instead, the following interpretation
is used. There are three (sub)tasks that need to be achieved. π1: three A molecules have to be
synthesized in container C1 (the amount of B molecules in this container is not monitored); π2:
one A molecule has to be synthesized in C2; π3: two B molecules have to be synthesized in
C2. This can happen in arbitrary order. Depending on the reaction scheme it might happen that
some subtasks are never realized, and such a possibility is allowed. In such a way, there is a
large amount of flexibility when individual molecules are delivered. It might happen that they
all arrive at the same time, but we are not requiring this to happen.

2 This implies that at t = 0 two A molecules and one B molecule are inserted in C1, and only one B molecule in
container C2.
3 In the real cell it is extremely unlikely that a large number of molecules will be delivered at the same time. Such a
system would very likely be unstable and prone to errors and, accordingly, such a scenario is not explored here.
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Figure 2. Simplest case of structured geometry: two volumes connected by a tube of length
L . Changes in average reaction time and its standard deviation when going from network like
(stretched) towards compact geometry are embedded in two parameters ντ and νσ .

Thus, π = [3A] − [1A, 2B] specifies that three subtasks are monitored and one operates
with three stochastic variables t1, t2 and t3 associated with subtasks π1, π2, and π3. In
general, these stochastic variables are not independent since, by assumption, once a subtask
is achieved the molecules that achieved it are removed from the system. The motivation for
removing molecules in such a way, apart from making the model more interesting by coupling
all variables, comes from analysis of the behaviour of the living cell. For example, substrate
molecules are always consumed and converted into something else (this is of course not true
for enzymes).

Furthermore, note that each of the subtasks can be achieved through various configurations.
For example, all configurations c = [(3A,♦); (♦,♦)] are sinks (here ♦ denotes any integer
starting from zero and upwards), or window states for achieving subtask π1.4 Once the system
reaches any such configuration three A particles are removed from C1, and the dynamics starts
again with π1 deleted from the list of tasks.

At this stage the reaction times are well defined. Two ways of calculating various moments
of these reaction times were discussed in a previous publication [32]. The details of the
calculation are not important for the present work. In brief, one has to solve a master equation,
such as the one given in equation (4), with perfectly absorbing window states present. In
such a setup the average reaction times τ and associated standard deviations σ can be readily
calculated by manipulation of matrices R (see [32] for details). For each of the subtasks in π

one needs an entry in τ and σ . For example, in the case of the two-container example discussed
above one has τ1 and σ1 (corresponding to π1), τ2 and σ2 (π2), τ3 and σ3 (π3), resulting in
τ = (τ1, τ2, τ3) and σ = (σ1, σ2, σ3).

In the following, in order to facilitate numerical comparison of τ and σ symbols τ and
σ will refer to the norm of corresponding vectors. For example, in the case of the particular

example just discussed one has τ =
√

τ 2
1 + τ 2

2 + τ 2
3 and σ =

√
σ 2

1 + σ 2
2 + σ 2

3 .

4 Once the system arrives in a window state it never leaves.
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Figure 3. Dependence of τ1, σ1, τ2, and σ2 on tube length L (transport rate D); o1: panels (a) and
(b); o2: panels (c) and (d); o3: panels (e) and (f).

4. Comparing various chemical reactions

At this stage one is left with the hardest part of the problem. How do we compare chemical
reactions that possibly involve different reaction schemes, number of particles, and are executed
in different geometries?

In order to facilitate comparison of various chemical reactions in structured and compact
geometries it is very useful to introduce the notion of an artificial organism5. It is defined as a
triple consisting of (i) reaction scheme (specified in equation (1)), (ii) inject and task patterns
ι and π , and finally (iii) the geometry of the problem (specified by the number of containers
and connections between them). The triple harbours three essential features of the living cell:
the presence of chemical reactions, intake of chemicals, and formation of products in various
regions. Instead of artificial organism the term organism will be used in the following.

A few examples that will be discussed later on are as follows: organism o1 with reaction

A
+A−→ B , inject pattern ι = [A] − [4A], and task pattern π = [4A] − [B]; organism o2

with reaction A
−B−→ B , inject pattern ι = [ ] − [4A], and task pattern π = [3A, B] − [ ];

and organism o3 with reaction A
−B−→ B , inject pattern ι = [A] − [2A], and task pattern

π = [2A]− [B]. Note that the reaction is the same for o2 and o3. They differ in inject and task
patterns and represent different organisms.

Two properties τ (L) and σ (L) will be studied when the geometry varies by extending the
tube length L from very short (compact geometry) towards very long (network-like geometry).
Figure 3 (panels (a), (c), and (e)) is an example which shows how individual components of τ

and σ for o1, o2, and o3 change when the tube length increases. Panels (b), (d), and (f) indicated

5 The term artificial cell would be equally useful.
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how the norms of τ (L) and σ (L) (normalized by the value at L = 0) depend on tube length. In
these panels two quantities are plotted, ντ (L) = τ (L)/τ (0) and νσ (L) = σ(L)/σ (0), where
τ (L) and σ(L) denote the norm of the vectors τ (L) and σ (L).

A detailed discussion on how the tube length L and exchange rate D are related can be
found in [37]. Here, L is just used to label various values for D, keeping in mind that D has
to decrease as L increases. By definition, L = 0 corresponds to D = 3125 s−1, L = 1 to
D = 625 s−1, 2 to 125 s−1, 3 to 25 s−1, 4 to 5 s−1, 5 to 1 s−1, 6 to 0.1 s−1, 7 to 0.04 s−1, 8 to
0.008 s−1, and L = 9 to D = 0.0016 s−1. λ is always set equal to 1 s−1.

It can be seen that o1 draws benefit from the network-like geometry in terms of reducing
both the average reaction time and the noise content, since in panel (b) ντ (L) and νσ (L)

decrease as L increases. Such a reaction is able to synchronize more in structured space and
gets more accurate in terms of timing. This property of being able to shorten the reaction time
and reduce the noise content can be extremely important from the point of view of biological
evolution. A similar situation occurs for o2, but after local minima are reached both ντ (L) and
νσ (L) start increasing. For this organism an optimal choice for L ≈ 4, 5 exists where reactions
are fastest and most accurate. Organism o3 is another interesting case with ντ (L) < 1 and
νσ (L) > 1. Since the goal is to compare a large number of reactions in such a manner it is
impractical to generate the equivalent of figure 3 for every organism studied.

The information provided in figure 3 needs to be compacted further. This is done as
follows. Two special values of D = Dn, D0 will be of interest. L = 0 with D = D0 � ξηλ

(η = 0, 1,−1) describes a situation when the containers are so close that exchange of chemicals
dominates the dynamics. Such a geometry is compact and the norms of vectors τ (L) and σ (L)

calculated at L = 0 will be denoted by τ0 and σ0 respectively. When L is sufficiently large,
e.g. L = 5, one has network-like geometry with D = Dn � ξηλ (η = 0, 1,−1) and the
norms of vectors τ (L) and σ (L) calculated at L = 5 will be denoted by τn and σn respectively.
See figure 2 for a way to think about these concepts. To classify each organism in the simplest
possible way two quantities will be used: ντ = τn/τ0 and νσ = σn/σ0. (These correspond to
ντ (L = 5) and νσ (L = 5); note the vertical dashed lines in figure 3.)

Figure 4 contains a histogram of all values νσ for a large number of organisms (generated
by computer). The left pane (panels (a), (c), (e), (g) and (i)) depicts the full νσ ∈ [0,∞)

range, while the right pane (panels (b), (d), (f), (h), and (j)) shows the νσ ∈ [0, 1] range that is
mostly interesting. It can be seen from the right pane that there are a large number of organisms
(reactions) that draw benefit from running their reactions in structured space in terms of noise
reduction. For the organisms depicted in the right pane (not explicitly shown; the vertical mark
only indicates their presence) the overall noise content is smaller in network-like geometry than
in the compact one (see figure 2).

In terms of noise reduction, the absolute winner is organism o1 with νσ = 0.019 01. The
value for ντ = 0.030 52 is somewhat larger. This indicates that although o1 draws benefit from
being run in network-like geometry by reducing the average reaction time, it draws more benefit
in terms of reducing noise content and is, in principle, able to synchronize more in structured
space. (Please note that this does not hold initially when L is small; e.g. see figure 3, panel (b),
region 0 � L � 4.)

It seems that the statistical properties of reaction time for o1 are Poisson-like with
τ (L) ≈ σ(L). Inspection of individual components of τ (L) and σ (L) confirms this, as
can be seen from figure 3, panel (a). The variance and average for time needed to achieve
individual subtasks closely follow each other. For example, at the point that is used as
representative for network-like geometry (L = 5, figure 3, panel (a), vertical dashed line)
one has τ n = [0.025 5653] − [0.010 0074], σ n = [0.015 3956] − [0.010 9905], τ 0 =
[0.000 733 870] − [0.899 383] and σ 0 = [0.000 720 187] − [0.994 857].
8



J. Phys.: Condens. Matter 19 (2007) 065149 Z Konkoli

 -2

 -1

0

1

2

 -100

 -50

0

50

100

 -2

 -1

0

1

2

 

 

 -2

 -1

0

0 01 12

1

2

 

 

 -2

 -1

0

1

2

 

 

 

 

σn
σ0

σn
σ0

χ σ0
σn

(a) (b)

(c) (d)

(e) (f)

(g) (h)

(i) (j)

-100

-50

0

50

100

-100

-50

0

50

100

-100

-50

0

50

100

-100

-50

0

50

100

-2

-1

0

1

2

N
o.

 o
rg

N
o.

 o
rg

N
o.

 o
rg

N
o.

 o
rg

N
o.

 o
rg

⎟⎟⎠

⎞
⎜⎜⎝

⎛

Figure 4. Classification of organisms (calculated with Dn = 1 s−1, D0 = 3125 s−1, λ = 1 s−1,
and ξ = 100). Panels (a), (c), (e), (g) and (i) are histograms that depict groups with similar values
for the ratio ν = σn/σ0. There are 100 classes of width 0.01 for ν from 1 to 2. The abscissa for
values ν > 1 has been rescaled and values obtained from χ(ν) = 2 − ln 2/ ln(1 + ν) are used in
the plot. The function χ maps the infinite interval [1,∞) onto [1, 2) and reveals more detail in the
region near ν = 1. Panels (b), (d), (f), (h), and (j) are discrete spectra (no histogram) for the region
ν ∈ [0, 1]. Panels in the same row have same value for the total number of particles in the system
N∗

p : (a) and (b) N∗
p = 1 (95 organisms), (c) and (d) N∗

p = 2 (2840 organisms), (e) and (f) N∗
p = 3

(3025 organisms), (g) and (h) N∗
p = 4 (9560 organisms), (i) and (j) N∗

p = 5 (24 890 organisms). A
negative value for the number of organisms indicates that the organism with a particular value of ν

contains at least one reaction that is inhibited.

(This figure is in colour only in the electronic version)

A very rough understanding of this phenomenon can be gained by inspecting the two-
state Markov process, where state (1) is left with rate λ and one arrives in state (2) which

9
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is fully absorbing. In such a case the master equation looks like ṗ1 = λp1, ṗ2 = −λp1.
Function g(t) ≡ ṗ2(t) describes the statistics of the reaction time. The Laplace transform
of g(t) can be trivially found G(s) = λ/(λ + s), and it gives τ ≡ −G ′(0) = 1/λ and
σ 2 ≡ G ′′(0) − G ′(0)2 = 1/λ2 leading to τ = σ equality. To some extent the structure of
configuration spaces of o1 very likely resembles the structure of the two-component space just
discussed.

There are many organisms that behave in a similar manner having νσ ≡ σn/σ0 < 1
and ντ ≡ τn/τ0 < 1, but due to lack of space detailed analysis of their features will
not be conducted here. On the other hand, it is interesting to discuss cases that behave
differently. There are organisms that exhibit heavy non-Poisson behaviour (τ = σ ) having
either νσ < 1 < ντ or νσ > 1 > ντ . For example, organism o2 behaves in such a way with
νσ = 0.921 45 < ντ = 1.1191. Likewise organism o3 has νσ = 1.111 44 > ντ = 0.840 83.

Panel (d) in figure 3 shows an interesting example where both ντ and νσ can be larger or
smaller than one, depending on the distance between containers. Both exhibit minima in the
region near L = 5. Perhaps, out of o2 and o3, the organism o3 is the best example of a reaction
scheme that exhibits non-Poisson statistics since there is a large difference in behaviour of νσ

and ντ (panel (f) in figure 3).
Another interesting feature that can be noted from figure 4 is that there is a range that

starts with νσ = 0 and ends with νσ ≈ 0.4 which is dominated by organisms with only
positive (promoter type) catalytic influences (marks indicating the presence of the organism
are drawn above the zero line). For example, at total number of particles N∗

p = 2 and at

νσ ≈ 0.4 organism o4 with inhibiting reaction shows up with reaction A
−A−→ B , B

+A−→ A
(note the minus sign for the A to B reaction); inject pattern: ι = [A] − [B]; task pattern:
π = [2B] − [ ], with τ n = [18.5492] − [ ], σ n = [19.2581] − [ ], τ 0 = [50.9049] − [ ],
and σ 0 = [51.8710] − [ ] leading to νσ = 0.371 269 and ντ = 0.364 389. This organism
stays as the leading one with the inhibiting reaction scheme in the whole range N∗

p = 2, 3, 4, 5
indicating the existence of a quasi-plateau for these types of organisms. The question is whether
increasing N∗

p further would introduce a new organism with similar properties below the current
threshold of νσ ≈ 0.4. Unfortunately, due to lack of more powerful computational resources,
this question will have to be left open.

5. Conclusions

In this work a special emphasis is placed on issues related to the timing of chemical reactions
in structured spaces. The two moments of the reaction time have been analysed, the average τ

and the standard deviation σ . The average of the reaction time measures the speed of reaction
while standard deviations indicate how noisy a reaction is. The special emphasis was on how
these quantities change as the reaction volume is altered from compact (open space denoted by
‘0’) towards structured (network-like) with many obstacles present (denoted by ‘n’).

By changing the value of the jump rate D relative to the reaction rate λ (considering
D = D0 � λ versus D = Dn � λ) it is possible to study the reaction- and diffusion-
controlled regime at the same time (by comparing τ 0 and σ 0 versus τ n and σ n) and express a
comparison through one parameter (ντ ≡ τn/τ0 and νσ ≡ σn/σ0).

It has been found that there are reactions that draw simultaneous benefits in terms of
increased reaction speed (ντ < 1) and noise reduction (νσ < 1) by being run in structured
spaces. Many reactions (organisms) have Poisson-like statistics which is robust under changes
in geometry (going from compact to network-like structure) with τ0 ≈ σ0 and τn ≈ σn .
Intermediate cases are also possible with strong non-Poisson statistics, where the behaviour
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of τ and σ changes asynchronously. For example, when altering the geometry from compact
to structured, there are organisms that draw benefit in terms of shorter reaction time but larger
noise (ντ < 1 and νσ > 1), and the other way around (ντ > 1 and νσ < 1).

The emphasis on the transition from Poisson-like towards non-Poisson-like statistics in
this work is not unique. For example, in [38, 39] the impact of energy landscape complexity
in various chemical processes (protein folding, or electron transfer) on the reaction time
statistics has been studied. Here, the configuration spaces considered are relatively simple
(the configuration space is not complex). All variations in the reaction time statistics originate
from changes in the system geometry.

A living cell interior is too complicated to be modelled in detail and in this study a simple
model of the living cell has been introduced, with a goal to presenting a general platform for
studying issues of timing in living cell biochemistry (e.g. by identifying catalytic influences that
might make the dynamics sensitive to geometrical changes). In order to make the presentation
pedagogical very small systems were studied with only two particle types (A and B) and two
containers. The present setup can be easily applied to study more complicated cases. This can
be achieved in several ways.

Various technical improvements are possible: for example, by improving the description
of transport between containers, or describing chemical reaction dynamics within containers
more accurately. Both theoretical and experimental studies are available that deal with these
issues [40, 41, 37, 42].

Cases with a larger number of molecule types and containers could be investigated, moving
towards an understanding of real chemical reactions in the living cell. There are a couple of
studies in which an attempt has been made to model living cells in great detail [43–45]. The
present work could be easily extended in a similar direction where whole scale simulations
could be merged with the setup presented in this work. In such a way it might be possible to
analyse timing issues of concrete processes in the living cell. It would be interesting to extend
the findings of this work in this direction, for example by studying the structure of chemical
reaction pathways in structures found in the interior of the living cells. A few examples are
golgi, mitochondria, and endoplasmic reticulum.
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